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Abstract. This is the course review on Semide�nite Programming taught by Prof. Levent Tuncel. I will
follow the structure of Levent's monograph on SDP optimization. As well, I will put my understanding and
relevant materials to help understand the contents. In the �rst part, I will show some background knowledge
on linear programming and some properties of semide�nite matrix. Then I will give the cannonical format
of SDP and associated weak and strong duality theorem. Ellipsoid and primal-dual interior point method
will be given in much detail to show how to solve a general SDP problem with Slater condition satis�ed.
Finally, some applications based on SDP in approximation algorithms will be presented to give a better look
and feel how powerful SDP is in many research areas.

1. Preliminary Knowledge Requirements

In order to keep the learning curve smoothly, we will recap some background knowledge on linear program-
ming (LP), polyhedral theory and linear algebra related to SDP. It serves the purpose to see the similarities
and di�erences between LP and SDP.

1.1. Linear Programming. In linear programming, we are exposed to the most important geometric
object, a polyhedron P ⊆ Rn which is de�ned as the intersection of �nitely many half spaces in Rn. The
linear programming problem is de�ned in a way such that we want to minimize or maximize a linear function
of n variables over a polyhedron in Rn. One great thing di�erentiating LP from other nonlinear programming
problems lies in that the both primal optimum and dual optimum are attained and there is no duality gap
between primal optimum and dual optimum (Strong duality theorem always holds). I will conform to the
symbolic conventions used in Levent's monograph on SDP. Suppose A ∈ Rm×n, b ∈ Rm and c ∈ Rn are
given, we have the primal problem given by

(LP ) min cTx
st. Ax = b

x ≥ 0

and the dual problem as framed as

(LD) max bT y
st. AT y + s = c

s ≥ 0

where y is the free dual variable, s is the slack variable to transform inequaltiy form LD to its equality form.
s or y is uniquely determined once the other is known. Keep in mind we have the following mnemonic rules
in formulating a primal-dual problem.

The feasible region of the primal problem is {x ∈ Rn : Ax = b, x ≥ 0} and the polyhedron de�ning the dual
problem is given by

{
y ∈ Rm : AT y ≤ c

}
. If we take the slack variable s into consideration as well, we have
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primal problem (max) dual problem (min)

equality constraint unrestricted variable
≤constraint nonnegative variable

nonnegative variable ≥constraint
unrestricted variable equality constraint

Table 1. Relationships between primal and dual problem

row(dual min problem)\column(primal max problem)
optimal solution unbounded infeasible

optimal solution can occur impossible impossible
unbounded impossible impossible can occur
infeasible impossible can occur can occur

Table 2. Possibilities for primal-dual pair

{
(y, s) ∈ Rm

⊕
Rn

+ : AT y + s = c
}
and {s ∈ Rn : Fs = Fc, s ≥ 0} where the row vectors of F ∈ R(n−m)×n

form a basis for the null space of A.
We should be very familiar with the Fundamental Theorem of LP, and it can be stated as: Exactly one

of the following three cases can occur for an LP problem:

(1) LP problem is infeasible. There is no solution for {x ∈ Rn : Ax = b, x ≥ 0};
(2) LP problem is unbounded. We can always �nd a sequence

{
x(k) ∈ {x ∈ Rn : Ax = b, x ≥ 0}

}
such

that cTx(k) → −∞.

(3) LP problem has optimal solution(s). We can �nd xopt such that cTxopt = min
{
cTx : Ax = b, x ≥ 0

}
and xopt ∈ {x ∈ Rn : Ax = b, x ≥ 0}.

We can classify the possibilities for a primal-dual pair in a table. The dual of the dual problem is the
primal problem so it is quite natural to �nd the accurate correspondence between primal and dual problems
from above table. For example, if primal (maximization problem) is unbounded, from weak duality, dual
problem can not be unbounded (otherwise, since every dual value is the upper bound for the primal value,
if dual is unbounded which means the dual value can go down to minus in�nity, the primal can not be
unbounded). The only possible situation which can happen to dual problem is infeasible. Similarly, if the
primal problem is infeasible, dual problem could be either infeasible or unbounded. If the feasible region is
a pointed polyhedron (contains no line in it) and the LP problem has optimal solution(s), there exists an
extreme point that is the optimal solution.

The weak duality theorem of LP says that for every feasible x̄ in (LP ) and every feasible ȳ in (LD), cT x̄
is greater than or equal to bT ȳ. This follows directly from the de�nitions cT x̄ ≥ (AT ȳ)T x̄ = ȳTAx̄ = bT ȳ. If
both (LP ) and (LD) are feasible, then they both have optimal solutions and the optimum values coincide.
To prove this, we need to refer to the very fundamental fact known as Farkas' Lemma. Exactly one of the
following systems has a solution:

(I) Ax = b, x ≥ 0
(II) AT y ≤ 0, bT y > 0
If (I) has a feasible solution x̄, then we can construct an (LP ) as min

{
0Tx : Ax = b, x ≥ 0

}
. From weak

duality, we know for the (LD) max
{
bT y : AT y ≤ 0

}
, we can get bT y ≤ 0T x̄ = 0.



SEMIDEFINITE OPTIMIZATION 3

1.2. Semide�nite Programming. In semide�nite programming, the variables take form as of the matrices
instead of the column vectors. The inner product form of the object function for SDP is changed to use
the trace operator on symmetric matrices 〈X,S〉 := tr(XTS) = Σn

i=1Σ
n
j=1Xx,jSi,j = tr(SXT ). Trace has

the cyclic property which means tr(ABC) = tr(CAB) = tr(BCA). For every nonsingular P ∈ Rn×n,
tr(PXP−1) = tr

(
XP−1P

)
= tr(X). For given X ∈ Rn×n, eigenvalues of X satis�es the polynomial

equation det(X − λI) = 0. We order the eigenvalues in this way λ1(X) ≥ λ2(X) · · · ≥ λn(X). It is obvious
tr(X) =

∑i=n
i=1 Xi,i =

∑i=n
i=1 λi(X) since X is always similar to its Jordan form with eigenvalues on the main

diagonal. The Frobenius norm for X is de�ned as

|X|F , 〈X,X〉1/2 =

√√√√ n∑
i=1

(λi(x))
2

In general, let A : Σn → Rm be a linear transformation, A's adjoint A? is given by 〈A?(y), X〉(Σn) =
〈y,A(X)〉(Rm) for ∀y ∈ Rm, X ∈ Σn. We can also de�ne A as [A(X)]i = 〈Ai, X〉 ,∀i ∈ {1, 2, · · ·m} where
Ai ∈ Σn, i ∈ {1, 2, · · ·m}. Now we can rewrite A?(y) in terms of those Ai's by A?(y) =

∑m
i=1 yiAi. We can

verify the inner product equality 〈A?(y), X〉(Σn) = 〈y,A(X)〉(Rm) by substituting the new form of A? into

the left hand side:

〈A?(y), X〉(Σn) =

〈
m∑

i=1

yiAi, X

〉
=

m∑
i=1

yi 〈Ai, X〉 =
m∑

i=1

yi [A(X)]i = 〈y,A(X)〉

For every symmetric matrix X ∈ Σn, it can be decomposed as

X = QDiag(λ(X))QT

where Q ∈ Σn and QTQ = I. An n × n matrix is diagonalizable if and only if the sum of the dimensions
of the eigenspaces is n. In general, a square complex matrix is similar to a block diagonal matrix J = J1

. . .

Jp

 where each Ji =

 λi 1
. . . 1

λi

 is called a Jordan block.

If above X is positive de�nite, we can de�ne the square root of X as X1/2 = Q [Diag(λ(X))]1/2
QT .

There is a necessary and su�cient condition to decide whether or not X is positive semide�nite by Cholesky
Decomposition. The theorem says X ∈ Σn

+ i� there exists a lower triangle matrix B ∈ Rn×n such that

X = BBT .
How do we know X ∈ Σn is positive semide�nite? The following statements are equivalent to each other.

(1) X is positive semide�nite;
(2) All eigenvalues of X are nonnegative: ∀j, λj(X) ≥ 0;
(3) X can be decomposed as the NONNEGATIVE linear combination of n outer product of column

vectors. That is, ∃µ ∈ Rn
+ such that X =

∑n
i=1 µih

(i)h(i)T

where h(i) ∈ Rn;
(4) X can be Cholesky decomposed, B can be singular;
(5) The determinant of any sub-matrix along the main diagonal (indices could be noncontinuous) is non-

negative. This can be formulated as ∀J ⊆ {1, 2, · · ·n}, det(XJ) ≥ 0 where XJ , {[Xi,j ] : i, j ∈ J};
(6) ∀S ∈ Σn

+, the inner product of X and S is nonnegative.

Similarly, the following are also equivalent (TFAE) in determining a symmetric matrix X is positive de�nite
or not:

(1) X is positive de�nite;
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(2) All eigenvalues of X are positive: ∀j, λj(X) > 0;
(3) X can be decomposed as the POSITIVE linear combination of n outer product of column vectors.

That is, ∃µ ∈ Rn
++ such that X =

∑n
i=1 µih

(i)h(i)T

where h(i) ∈ Rn;
(4) X can be Cholesky decomposed, B is nonsingular;

(5) ∀J ⊆ {1, 2, · · ·n}, det(XJ) > 0 where XJ , {[Xi,j ] : i, j ∈ J};
(6) ∀S ∈ Σn

+\{0} 〈X,S〉 > 0;
(7) X � 0 and rank(X) = n.

It is worth pointing out that every positive semide�nite matrix has the property that if Xi,i = 0, then the
whole column and the whole row at index i must be zero as well. That is, if X � 0 and Xii = 0, then
Xij = Xji = 0,∀j ∈ x {1, · · ·n}.

Gersgorin Disk Theorem gives the boundary condition for the eigenvalues of the matrix. Let A ∈ Cn×n

with entries (Aij). For each i ∈ {1, · · ·n} , we denote Ri =
∑

j 6=i |aij |. Let D(aii, Ri) be the closed disk
centered at aii with radius Ri, those disks are called Gersgorin Disks. We have the fact that every eigenvalue
of A lies within at least one of the Gersgorin Disks. Let λ be an eigenvalue of A and x = (xj)T be
the corresponding eigenvector. Let i be chose such that |xi| = maxj |xj |. |xi| can not be zero otherwise
the eigenvector is NULL. We have AX = λX or in component-wise equality

∑
j aijxj = λxi so we get

λxi − aiixi =
∑

j 6=i aijxj . We can divide both sides by |xi|, then we arrive at

|λ− aii| =
∣∣∣∣
∑

j 6=i aijxj

xi

∣∣∣∣ ≤∑
j 6=i

|aij | = Ri

We say a matrix X is strictly diagonal dominant if Xii ≥
∑

j 6=i |Xij | ≥ |λ−Xii|. Directly from Gersgorin

disk theorem, we can safely draw the conclusion for X ∈ Σn and X is (strictly) diagonal dominant, X is
positive semide�nite (de�nite). This is because for every eigenvalue λ, it lies within a Gersgorin Disk. From
the de�nition of the diagonal dominant, we can conclude every λ ≥ 0 (X is symmetric thus all eigenvalues
are real).

Having above knowledge, we can de�ne the semide�nite programming problem in standard form and its
dual. Suppose C ∈ Σn, b ∈ Rm and a linear operation A : Σn → Rm are given, the primal of the SDP
problem is given by

(P ) inf 〈C,X〉
st. A(X) = b

X � 0

and the dual of the SDP problem is as follows

(D) sup bT y
st. A?(y) + S = C

S � 0

We can make reference to the previous more explicit form of A. Let A1, A2, · · ·Am ∈ Σn and for every
X ∈ Σn, |A(X)|i = 〈Ai, X〉 . Rewrite the above (P ) and (D) as:

(P ) inf 〈C,X〉
st. 〈Ai, X〉 = bi ∀i ∈ {1, · · ·m}

X � 0
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and

(D) sup bT y
st.

∑m
i=1 yiAi + S = C

S � 0

Notice that we use inf and sup instead of min and max respectively since for nonlinear programming problems,
optimal solution may not be attained. Here I will bring in some concepts concerning convex cones and we
will be able to �nd that above primal-dual pair SDP problem actually is a special case of more general
convex optimization problems in conic form. I will give more details about conic and convex programming
in the next tutorial. A cone K ∈ Rd is a convex cone if K + K ∈ K and ∀α > 0, αK ⊂ K. A dual of a K is
K∗ ,

{
s ∈ Rd : 〈x, s〉 ≥ 0,∀x ∈ K

}
.

For SDP programming problems, we also have weak duality relation. Let X̄ be feasible in (P ) and (ȳ, S̄)
be feasible in (D). Then

〈
C, X̄

〉
− bT ȳ =

〈
X̄, S̄

〉
≥ 0. The proof is very similar to the proof in LP and we

know 〈
C, X̄

〉
− bT ȳ =

〈
C, X̄

〉
−A(X̄)T ȳ =

〈
C, X̄

〉
−
〈
X̄,A?(ȳ)

〉
=
〈
C −A?(ȳ), X̄

〉
=
〈
X̄, S̄

〉
≥ 0

We have the similar corollary about the relationships between primal and dual for SDP problems as well. If
(P ) is unbounded then (D) is infeasible and if (D) is unbounded then (P ) is infeasible. If we �nd feasible
solution X̄ of (P ) and (ȳ, S̄) of (D) and the duality gap

〈
C, X̄

〉
− bT ȳ =

〈
X̄, S̄

〉
= 0, then X̄ is optimal in

(P ) and
(
ȳ, S̄

)
is optimal in (D).

Let X,S ∈ Σn
+ then 〈X,S〉 = 0 i�. XS = 0. Su�ciency is trivial since 〈X,S〉 = tr(XTS) = tr(XS) =

0. If 〈X,S〉 = 0 and they both are positive semide�nite, by cyclic property of trace operator, we have
tr(XS) = tr(X1/2X1/2S) = tr(X1/2SX1/2) = 0. Notice that X1/2SX1/2 is also positive semide�nite so
all its eigenvalues are nonnegative and the summation of all the eigenvalues should be equal to its trace

hereby 0. This implies 0 = X1/2SX1/2 =
(
X1/2S1/2

) (
X1/2S1/2

)T
. Thus X1/2S1/2 = 0 and we get

XS = X1/2
(
X1/2S1/2

)
S1/2 = 0.

Rayleigh quotient is de�ned as ρ(h) = ρ(h;X) = hT Xh
hT h

. The Rayleigh quotient enjoys the following
properties:

(1) Homogeneity: ρ(αh) = ρ(h), α 6= 0
(2) Boundedness: ρ(h) ranges over the interval [λn(X), λ1(X)] as h ranges over non-zero n−vectors.
(3) Stationarity: The gradient of ρ is 0 is at and only at the eigenvectors of X.

Courant-Fischer min-max theorem related to Rayleigh quotient says: Let X ∈ Σn be Hermitian, then

λk(X) = min
L⊆Rn,dim(L)=n−k+1

max
h∈L\{0}

hTXh

hTh
= max

L⊆Rn,dim(L)=k
max

h∈L\{0}

hTXh

hTh
, ∀k ∈ {1, 2, · · · , n}

This theorem also gives the well known cases λ1(X) = maxh∈Rn\{0}
hT Xh
hT h

and λn(X) = minh∈Rn\{0}
hT Xh
hT h

.
The proof of the above theorem can be referenced to Golub/van Loan.

2. Duality Theory for SDP

Duality is very import in LP theory. Many wonderful aspects of duality can not be applied to SDP and
general convex optimization problems. We will try to give explanations of duality in Geometry therefore
the following will focus on conic programming problems. We know that the dual cone of K ⊆ Rd is de�ned
as K∗ ,

{
s ∈ Rd : 〈x, s〉 ≥ 0,∀x ∈ K

}
. The polar set of s ⊆ E, s 6= φ is so , {a : 〈a, x〉 ≤ 1,∀x ∈ s}. The

negative polar of K is de�ned as K− , {a : 〈a, k〉 ≤ 0,∀k ∈ K}. If K is a convex cone, then its polar cone
and negative polar coincide. This follows for k 6= 0, α > 0, αk ∈ K, 0 < 〈a, αk〉 = α 〈a, k〉 → ∞ as α → ∞,
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Figure 2.1. Dual Cone and Polar Cone wrt. Set C

Figure 2.2. Fenchel conjugate function f∗(y) is the maximum gap between yx and f(x)
maximum occurs at x where f

′
(x) = y

which contradicts ≤ 1 constraint. Therefore for convex cone K, we have Ko = K−. The following diagram
shows the dual cone and polar cone in geometry.

For a given function f : Rd 7→ R ∪ {∞}, we de�ne its Legendre-Fenchel conjugate as

f∗(s) , sup
{
−〈s, x〉 − f(x) : x ∈ Rd

}
In other literature, Fenchel conjugate function is also de�ned as f∗(s) = f∗(−s). The Fenchel conjugate's
geometric meaning is shown in the following �gure.

The epigraph of a function f is de�ned as

epi(f) ,

{(
t
x

)
∈ R⊕ Rd : f(x) ≤ t

}
and it is obvious to see that a function is convex if and only if its associated epigraph is a convex set.(

y
t

)
∈ epi(f)⇒

[
∇f(x)
−1

]T ([
y
t

]
−
[

x
f(x)

])
≤ 0

Hahn-Banach Theorem in �nite dimension version servers a central role in optimization. If S ⊆ E is
convex closed set and x̄ /∈ S, then there exists a ∈ E, b ∈ R such that 〈a, x̄〉 > b ≥ 〈a, x〉 ,∀x ∈ S. This is
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Figure 2.3. Vector (−∇f(x),−1)de�nes the supporting hyperplane to the epi(f) at x

Figure 2.4. Hyperplane Separation Theorem

given another well-known name as Hyperplane Separation Theorem. We can prove the corollary that let
C1,C2 ⊂ Rd be disjoint, nonempty closed convex set. If C1 or C2is bounded then there exists a ∈ Rd\{0}
such that

inf
{
aTx : x ∈ C1

}
> sup

{
aTx : x ∈ C2

}
.

The proof is not very hard when we consider the distance de�ned by inner product in Euclidean space.
Figure 2.2 shows the geometry for this hyperplane separation theorem, and supporting hyperplane for a
convex set. Notice that a is the normal to the hyperplane which separates the two convex sets.

De�nition 2.1. We say (P ) satis�es the Slater condition, or (P ) has a Slater point if there exists a symmetric
matrix X̄ such that it is feasible and positive de�nite (A(X̄) = b, X̄ � 0). Similarly for the dual problem,
(D) has a Slater point if there exists S̄ ∈ Σn and ȳ ∈ Rm such that A?(ȳ) + S̄ = C and S̄ � 0.

We can move to prove a Strong Duality Theorem for SDP problems.

Theorem 2.2. Suppose (D) has a Slater point. If the objective value of (D) is bounded from above then
(P ) attains its optimum value and the optimum values of (P ) and (D) coincide.

Proof. This a little bit intense proof is also referring to Levent's monograph. We need some real analysis,
linear algebra, weak duality of SDP to complete the proof. After this, we will give some concrete examples
of SDP and see the di�erence between LP and SDP in terms of their dualities. Let S̄ ∈ Σn

++, ȳ ∈ Rm
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be the Slater point satisfying A(ȳ) + S̄ = C, we de�ne z∗ , sup
{
bT y : A?(y) � C

}
to be the optimum

value of the dual problem. We will deal with two cases for b. If b = 0, then (ȳ, S̄) is the optimal solution
to the dual problem since every feasible solution to (D) is optimal and the optimum value is equal to 0.
By weak duality theorem of SDP, the smallest value the primal problem can choose is 0, and at X̄ =
0 ∈ Σn

+ this value is attained. Therefore (P ) attains its optimum value and the optimum values of (P )
and (D) coincide as stated above. If b 6= 0, we can construct two separable closed convex sets G1 and

G2: G1 ,
{
S ∈ Σn : S = C −A?(y), y ∈ Rm, bT y ≥ z∗

}
and G2 , Σn

++. First of all, G1is not empty. By
the de�nition of supremum, there exists a sequence (dual problem is feasible as given in the theorem){
y(k), S(k)

}
⊂ Rm⊕Σn

+ such that A?(y(k))+S(k) = C and bT y(k) → z∗. A linear function bT y over an a�ne

subspace A?(y) + S = C,A?(y) =
∑m

i=1 yiAi attains its limit. That is, limk→∞
(
y(k), S(k)

)
→
(
ŷ, Ŝ

)
such

that A?(ŷ) + Ŝ = C and bT ŷ = z∗. Therefore Ŝ is in the set G1and we need to show G1 is also a convex
set. By de�nition, suppose S1 = C −A?(y1) ∈ G1 and S2 = C −A?(y2) ∈ G1, for any λ ∈ [0, 1], the convex
combination

λS1 + (1− λ)S2 , S̃ = C − λA?(y1)− (1− λ)A?(y2)
is symmetric. In addition, since

λA?(y1)+(1−λ)A?(y2) = λ

m∑
i=1

y1,iAi +(1−λ)
m∑

i=1

y2,iAi =
m∑

i=1

(λy1,i +(1−λ)y2,i)Ai = A?(λy1 +(1−λ)y2)

we can say S̃ = C−A?(ỹ) where ỹ = λy1 +(1−λ)y2 and bT ỹ = bT (λy1 + (1− λ)y2) ≥ λz∗+(1−λ)z∗ = z∗.
The convexity of G1 is obvious since we the objective value bT y is de�ned on an a�ne subspace. Σn

++ is a
convex cone and int(Σn

+) = Σn
++. Now we will prove G1 ∩ G2 = φ by contradiction. Suppose ȳ is positive

de�nite (∈ G2 = Σn
2++) and bT ȳ ≥ z∗, then we can �nd a neighbour ŷ , ȳ + εb for some ε > 0 such

that A?(ŷ) ≺ C (Σn
++ is continuous and A? is an a�ne transform, thus preserves the property of positive

de�niteness) and bT ŷ = bT (ȳ + εb) = z∗ + εbT b︸︷︷︸
>0(b 6=0)

> z∗. This contradicts the fact that z∗ is the optimal

solution of the (D) hence G1 ∩ G2 = φ as desired. Now we can apply the variant version of the separation

theorem to disjoint convex set G1 and G2. There exists X̃ ∈ Σn\{0} such that

sup
S∈G1

〈
X̃, S

〉
≤ inf

S∈Σn
++

〈
X̃, S

〉
From the LHS of the inequality we arrive at a conclusion that infS∈G2

〈
X̃, S

〉
is bounded since G1is not

empty (every feasible point in G1 gives a lower bound to the RHS in�mum). Keep in mind G2 = Σn
++is

a convex cone, we must have
〈
X̃, S

〉
≥ 0. Otherwise, if

〈
X̃, S

〉
< 0,then for arbitrary α > 0, αS ∈ Σn

++

and
〈
X̃, αS

〉
= α

〈
X̃, S

〉
→ −∞ as α → +∞, which contradicts the in�mum is bounded from below.

This implies for every S ∈ cl(Σn
++) = Σn

+,
〈
X̃, S

〉
≥ 0. Hence X̃ is positive semide�nite. Therefore

infS∈Σn
++

〈
X̃, S

〉
≥ 0 and we can construct a sequence

{
S(k)

}
⊂ Σn

++ → 0 to conclude the in�mum is 0

indeed. Thus supS∈G1

〈
X̃, S

〉
≤ 0 for every y ∈ Rm, bT y ≥ z∗. This is equivalent to saying

〈
X̃, C

〉
−〈

X̃,A?(y)
〉
≤ 0 ⇒ A(X̃)T y ≥

〈
C, X̃

〉
over

{
y ∈ Rm : bT y ≥ z∗

}
.LP duality implies here A(X̃) = αb for

some α ≥ 0 (holds at X̃). We will prove α can not be zero. Otherwise, A(X̃) = 0 ⇒
〈
C, X̃

〉
≤ 0. From

separation theorem we know X̃ ∈ Σn, X̃ 6= 0, and we have proved X̃ ∈ Σn
+. We are also given (ȳ, S̄) ∈ Rm⊕Σn
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such that A?(ȳ) + S̄ = C and S̄ � 0. Based on those facts, we have arrived at a contradiction

0 ≥
〈
C, X̃

〉
=
〈
A?(ȳ) + S̄, X̃

〉
= A(X̃)T y︸ ︷︷ ︸

=0

+
〈
X̃, S̄

〉
︸ ︷︷ ︸

>0

> 0

Therefore α must be a positive number. We can de�ne X̄ , 1
αX̃ ∈ Σn

+ and A(X̄) = A( 1
αX̃) = 1

αA(X̃) = b.

We should be aware of that X̄ is the feasible solution in (P ). Because of A(X̃)T y ≥
〈
C, X̃

〉
for all y ∈ Rm

such that bT y ≥ z∗, we can conclude
〈
C, X̄

〉
≤ z∗ and by weak duality theorem we have

〈
C, X̄

〉
≥ z∗ thus〈

C, X̄
〉

= z∗ = sup
{
bT y : A?(y) � C

}
. �

The strong duality theorem implies that the optimum value of (D) may not be attained even though it
does exist. There are two corollaries to the strong duality theorem.

Corollary 2.3. If (P ) and (D) both have Slater points, then they both attain their optimal values and the
optimal values of (P ) and (D) are the same.

The proof simply follows if both primal and dual have Slater point (feasible solution as well), by weak
duality theorem, (P ) is bounded from below and (D) is bounded from above. Then by applying the strong
duality theorem, both dual and primal problems attain their optimum values and the optimum values
coincide.

Corollary 2.4. If (P ) has a feasible solution and (D) has a Slater point then (P ) attains its optimal value
and the optimal value of (P ) and (D) are the same.

The proof is trivial (similar to above corollary).
Let's do some examples to show the duality theorem in practice. I have to take the examples from Levent's

lecture notes because I think those examples are really very elegant and self-explained to many concepts we
have just introduced.

Example 2.5. Suppose we have the primal problem stated as:

(P ) inf
〈(

1 0
0 0

)
, X

〉
st.

〈(
0 1
1 0

)
, X

〉
= 2

X � 0

and dual problem (dual constraint is C

(
=
(

1 0
0 0

))
−A?(y)

(
= yA1 =

(
0 y
y 0

))
= S � 0) given by:

(D) sup 2y

st.

(
1 −y
−y 0

)
� 0

Suppose X =
(
X11 X12

X21 X22

)
is the feasible solution of (P ). By the constraint we can establish the

relationships between the component of X. From the equality constraint we get X12 = X21 = 1. From

positive semide�nite constraint, we should guarantee X11X22 ≥ 1, X11 ≥ 0, X22 ≥ 0. Notice that
(
ε 1
1 1

ε

)
is feasible in (P ) for every ε > 0 and 〈C,X(ε)〉 = X11 = ε→ 0 as ε→ 0. Since 〈C,X〉 = X11 ≥ 0 and we have
constructed X(ε) such that inf 〈C,X(ε)〉 = 0, thus the primal has the optimal value equal to 0. The optimum
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value 0 is not attained otherwise X11 = 0 will contradicts X11X22 ≥ 1. Or since X is positive semide�nite,
the diagonal element X11 = 0 implies X21 = X12 = 0. This also violates the equality constraint. For the

dual problem, in order to keep

(
1 −y
−y 0

)
� 0, y = 0 is the only feasible point in (D) and thus optimal as

well. The dual problem's optimal value is attained at y = 0 and there is no duality gap between the primal
and the dual. This suggests primal problem should have a slater point since dual problem's optimal value

coincides with primal's and is attained as well. Actually X̄ = I + eeT =
(

2 1
1 2

)
is a Slater point in (P ),

which justi�es our conjecture. Let's do another example.

Example 2.6. C ,

 0 1 0
1 0 0
0 0 0

,A1 ,

 0 0 0
0 1 0
0 0 0

, A2 ,

 0 0 1
0 0 0
1 0 0

,A3 ,

 0 0 0
0 0 1
0 1 0

, A4 ,

 0 −1 0
−1 0 0
0 0 2

, b ,


0
0
0
10


We can infer the dimension of the constraints by counting the row number of b or the number of Ai's. The

dimension of X must be the same to C or any Ai. From the �rst equality constraint we can conclude X must

take form as X =

 0
0 0 0

0

(main diagonal element is 0, then the elements sitting at the same row and

column must be 0 as well). Finally we get X =

 ∗ 0 0
0 0 0
0 0 5

 is the feasible solution in (P ). Every feasible

solution in (P ) is the optimal solution with the optimal value 0. The dual variable y =


y1
y2
y3
y4

 ∈ R4 have

to satisfy

C − y1A1 − y2A2 − y3A3 − y4A4 =

 0 1 + y4 −y2
1 + y4 −y1 −y3
−y2 −y3 −2y4

 � 0

We can easily work out y4 = −1, y2 = 0 thus the dual problem's objective value bT y = 10× (−1) = −10 for
all feasible solutions in (D). There is a duality gap of 〈C,Xopt〉− bT yopt = 10, which implies neither problem
has a Slater point.

Let's study the following example in examination of the LP − like unboundedness proof in SDP.

Example 2.7. Suppose primal and dual are given by

(P ) inf
〈(

0 1
1 0

)
, X

〉
st.

〈(
1 0
0 0

)
, X

〉
= 1

X � 0
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and

(D) sup y

st.

(
y 0
0 0

)
�
(

0 1
1 0

)

Let X(α) ,

(
1 α
α α2

)
and X(α) is feasible for every α ∈ R. 〈C,X(α)〉 = 2α goes to minus in�nity

when α goes to minus in�nity. So the primal problem is unbounded and the dual problem is infeasible

(

(
−y 1
1 0

)
can not be positive semide�nite as expected). In LP, when we prove unboundedness, we can

start from a feasible point and always �nd a search direction such that Ad = 0, d ≥ 0 with cT d < 0
(x0 ∈ {x ∈ Rn : A(x) = b}, a new point x1 = x0 + d with the objective value at x1 being cT (x0 + d) =

cTx0 + cT d︸︷︷︸
<0

→ −∞ as d→∞). In this example, the feasible region is parabolic since

(
1 X12

X12 X22

)
� 0⇒{(

X12

X22

)
∈ R2 : X22 ≥ X2

12

}
.We can not �nd a line search direction from starting point

(
0
0

)
such that

all points along that direction are feasible and keep the objective value increasing for max/deceasing for min
to in�nity. This is the di�erence between LP and SDP: we may go along a parabolic curve (X22(= α2) =
X2

12(X12 = α) as given in the example) to prove the unboundedness of the problem in question instead of a
line. With SDP terminology, it is equivalent to say if there does not exist a search direction D ∈ Σn

+ such
that A(D) = 0 and tr(CD) < 0, the problem is unbounded. However, we say (D) is almost feasible if we

perturb C a little bit for every ε > 0, there exists C
′ ∈ Σn such that ||C −C ′ || < ε and A?(y) � C ′

feasible.

Theorem 2.8. Suppose A : Σn 7→ Rm and C ∈ Σn are given. Then
(a) if there exists D ∈ Σn such that D � 0, A(D) = 0, tr(CD) < 0, then there does not exist y ∈ Rm

such that A?(y) � C (unboundedness⇒infeasible)
(b) if there does not exist D ∈ Σn such that D � 0, A(D) = 0, tr(CD) < 0 then (D) is almost feasible.

Proof. Part (a) is an easy part which can be proved by contradiction. 0 ≤︸︷︷︸
C−A?(y),D∈Σn

+

〈C,D〉− 〈A?(y), D〉 =

〈C,D〉 − yT A(D)︸ ︷︷ ︸
=0

= 〈C,D〉 < 0 . In order to prove part (b), we construct a primal-dual pair as follows:

(D1) sup η
st. A?(y) + ηI � C

η ≤ 0

and its dual is given by

(P1) inf 〈C,X〉
st. A(X) = 0

tr(X) ≤ 1
X � 0
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Figure 3.1. Face Exposure

Let ȳ , 0, η̄ , −||C||2 − 1. The way we choose η is to guarantee A?(ȳ) + η̄I � C by introducing diagonal
dominant matrix to

C − η̄I =


C11 + ||C||2 + 1 C12 · · · C1n

C21 C22 + ||C||2 + 1 C2n

...
...

. . .
...

Cn1 Cn2 · · · Cnn + ||C||2 + 1


where ||C||2 = 〈C,C〉1/2 =

√(∑n
j=1

∑n
i=1 C

2
ij

)
. Thus the dual problem (D1) has a Slater point and is

bounded from 0. Notice that X̄ , 0 is feasible in (P1) therefore by corollary of the strong duality theorem,
(P1) has attained its optimal value and there is no duality gap. Suppose we don't have D ∈ Σn such that
D � 0, A(D) = 0, tr(CD) < 0 , this implies the optimal objective value of (P1) is zero. By strong duality
theorem, the optimal objective value of (D1) is also 0. Therefore either (D1) attains its optimal value (η = 0,
and A?(y) � C) or there exists a sequence

{
y(k), ηk

}
such that

A?
(
y(k)

)
+ ηkI � C

and ηk → 0−. In both cases, A?(y) � C is almost feasible. �

3. Slater Condition and Borwein-Wolkowicz Approach

In many cases for SDP problems, both primal and dual problem have feasible solutions but their optimal
values do not coincide. There are ways to de�ne an appropriate dual problem such that strong duality
theorem holds with the same optimal objective value. First let's see a de�nition of face of a convex cone.
Let K ⊂ Rd be a convex cone, G ⊆ K is called a face of K if for every u, v ∈ K such that u + v ∈ G, we
have both end points u, v ∈ G. A face G of K is called exposed if there exists a normal vector a ∈ Rd such
that G = {x ∈ K : 〈a, x〉 = 0} and K ⊆ {x : 〈a, x〉 ≥ 0}, which is equivalent to saying exposed face G is the
intersection of K with one of its supporting hyperplanes. An exposed face and unexposed face of a convex
cone is shown in the following �gure:

The LHS �gure shows the fact that every polyhedral cones are facially exposed. The RHS �gure show
that the two sided faces are not exposed since we can not �nd a normal a satisfying above both contraints.
For positive semide�nite cone Σn

+, the face of it has very special and interesting properties.
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Theorem 3.1. (a) Every proper face of Σn
+ is characterized by a linear subspace L such that for every face

G, G =
{
x ∈ Σn

+ : Null(X) ⊇ L
}
and relint(G) =

{
X ∈ Σn

+ : Null(X) = L
}
.

(b) Every proper face is exposed.
(c) Every proper face is projectionally exposed. In particular, ∃Q such that G = (I −Q)Σn

+(I −Q) where
Q ∈ Σn

+ is the projection onto the unique subspace L de�ning G. In other words, every proper face of Σn
+

is isomorphic to Σk
+ for k < n. ∃W ∈ Rn×n, nonsingular such that G = W

{(
X 0
0 0

)
: X ∈ Σk

+

}
WT .

∃T ∈ Aut(Σn
+) such that G = T

(
Σk

+ 0
0 0

)
.

If we can �nd a minimum face of Σn
+ such that it contains the feasible region, we can apply linear

isomorphism so that the image of the proper face is

{(
X 0
0 0

)
∈ Σn : X ∈ Σk

+

}
. Let's consider the

original SDP problem:

(P ) inf 〈C,X〉
st. A(X) = b

X � 0

Suppose the primal has a �nite optimal objective value, it implies that the feasible region is nonempty. Let
Ḡ denote the minimal face of Σn

+ containing the feasbile region, we can rewrite the primal problem in a new

form (P̄ ):

(P̄ ) inf 〈C,X〉
st. A(X) = b

X ∈ Ḡ

where X ∈ Ḡ if and only if X ∈ L
{

Σk
+ 0
0 0

}
.

In general, if we add redudant constraints to the original primal problem, the duality gap can be closed.
However, the dual feasible region could be potentially larger by doing so. Let's do an example to see how
this happens.

The revised primal-dual pair can be written as:

(P̃ ) inf 〈C,X〉
st. A(X) = b

Ã(X) = 0︸ ︷︷ ︸
redundent

X � 0

and

(D̃) sup bT y

st. A?(y) + Ã?(v) � C

The feasible region y is larger than the original one.
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Example 3.2. i.e, C =

 1 0 0
0 0 0
0 0 0

 A1 =

 0 0 0
0 1 0
0 0 0

 A2 =

 1 0 0
0 0 1
0 1 0

 A3 =

 0 0 0
0 0 1
0 1 0


b =

 0
1
0

. Suppose the third constraint is newly added redundant constraint (By redundant we mean

from A1 and A2 we are able to decide X23 = X32 = 0 of X already). We know the matrix variable X should

take form as

 1 0 ∗
0 0 0
∗ 0 ∗

from above contraints and the primal problem has the optimal value 1 and the

optimal value is attained. In the revised dual problem

(D̃) sup y2

st.

 1− y2 0 0
0 −y1 −y2 − y3
0 −y2 − y3 0

 � 0

we can deduce that y2 = −y3, y2 ≤ 1 and y1 ≤ 0. The optimal value of (P̃ ) is 1 and there is no duality gap.

In the original problem without the third constaint in (P̃ ), the dual problem (D) is given by

(D) sup y2

st.

 1− y2 0 0
0 −y1 −y2
0 −y2 0

 � 0

where we have the following contraints on y1, y2 such that y2 = 0, y1 ≤ 0. Notice that the duality gap is 1
and it is closed by adding the redundant constraint.

Borwein and Wolkowicz gives an algorithm on how to get to (P̄ ) from (P ) in �nitely many steps. Since
(P̄ ) considers minimal face of Σn

+, Slater condition holds for (P̄ ) thus strong duality theorem can be applied

to (P̄ ). Ramana proposed another way to arrive from (P ) to (P̄ ). For the original dual problem

(D) sup bT y
st. A?(y) � C

Ramana gives the so called Extended Lagrangian-Slater Dual

(ELSD) inf
〈
C,U +W +WT

〉
st. A(U +W +WT ) = b

A(V ) = 0
U � 0

W ∈ Rn×n

and proved that if (D) has a �nite optimal objective value then so deos the (ELSD) and their optimal values
are the same, and (ELSD) attains its optimal.

Theorem 3.3. Let A : Σn 7→ Rm, C ∈ Σn be given, then exactly one of the following systems has a solution.
(I) A?(y) � C,
(II) A(U +W ) = 0, A(V ) = 0,V �WWT , U � 0 and

〈
C,U +W +WT

〉
= −1
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We will talk something about when the Slater condition holds in SDP relaxations. We may encounter
problem like in a linear form inf

{
cTx : x ∈ F

}
or a quadratic form inf

{
cTx+ xTCx : x ∈ F

}
where F ⊂ Rn

and F is nonconvex. We need to do convexations on the feasible region and get Slater condition held.

De�nition 3.4. Assume F and A have the property that F =
{
x ∈ Rn : A

(
1 xT

x xxT

)
= 0
}

where

A : Σn+1 7→ Rm is a linear transformation. We call this form the Homogeneous Equality Form (HEF).

We can put every system of �nitely many quadratic inequalities into the Homogeneous Equality Form.
The following Homogeneous Equality Form〈 γ qT 0

q Q 0
0 0T 1

 ,

 1 xT s̃
x xxT s̃x
s̃ s̃xT s̃2

〉

is equivalent to the quadratic inequality γ + 2qTx + xTQx ≤ 0 where Q ∈ Σn,q ∈ Rn, γ ∈ R and s̃ ∈ R.
Actually every �nite system of polynomial inequalities can be put into Homogeneous Equality Form.

Example 3.5. Put x1x
3
2x4 + x2

3 + x3
5 ≤ 0 into HEF.

Let y1 = x2
2, y2 = y1x2, y3 = x1x4, y4 = x2

5, we arrive at y2y3 + x5y4 + x2
3 ≤ 0 .......

SDP relaxation on F , conv

{(
1 xT

x X

)
∈ Σn+1 : x ∈ F

}
gives

P̂ ,

{(
1 xT

x X

)
∈ Σn+1 : A

(
1 xT

x xxT

)
= 0,

(
1 xT

x X

)
� 0
}

since X = xxT � 0 is also a feasible point in F . It is obvious P̂ ⊇ F and F is the projection of the
intersection of P̂ with rank-1 matrices. Keep in mind

inf
{
cTx+ xTCx : x ∈ F

}
= inf

{〈(
0 1

2c
T

1
2c C

)
,

(
1 xT

x X

)〉
:
(

1 xT

x X

)
∈ F

}
We have the following nice theorem about the Slater condition for P̂ .

Theorem 3.6. Suppose F and P̂ are given as above, then the Slater condition holds for P̂ if conv(F ) is full
dimensional.

Proof. v(1), v(2), · · · v(k) ∈ Rn are a�nely independent i�
(
v(2) − v(1)

)
,
(
v(3) − v(1)

)
,· · · ,

(
v(k) − v(1)

)
are

linearly independent or if

(
v(1)

1

)
, · · ·

(
v(k)

1

)
∈ Rn+1 in the lifted space are linearly independent. Since

conv(F ) is full dimensional, there exists an a�nely independent vectors in F . We de�ne a new matrix

Vλ ,
∑n+1

i=1 λi

(
1
v(i)

)(
1
(
v(i)
)T )

where λ ≥ 0 and ēTλ = 1. It is obvious Vλ ∈ F ⊆ P̂ and Vλ is

nonsingular if λ > 0 and ēTλ = 1. We can further get Vλ ∈
(
P̂ ∩ Σn

++

)
as desired. �

What if the dimension of the convex hull of F is not full? We can de�ne a lower dimensional convex hulls
which still satisfy the Slater condition in a lower dimension problem. Suppose dim(conv(F )) = d < n , there
exist L ∈ Rd×n, l ∈ Rn such that L has full row rank and x ∈ F ⇒ x = l + LT y for some y ∈ Rd. In the
lifted space we de�ne L(Z) : Σn+1 7→ Σd+1

L(Z) ,

(
1 lT

0 L

)
Z

(
1 0T

l LT

)
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and de�ne Ā : Σd+1 7→ Rm as

L̄(W ) , A (L∗(W )) = A
((

1 0T

l LT

)
W

(
1 lT

0 L

))
We can rewrite the feasible region F as

F =
{
l + LT y : y ∈ Rd, Ā

(
1 yT

y Y

)
= 0
}
.

We de�ne

FL ,

{
y ∈ Rd : Ā

(
1 yT

y yyT

)
= 0
}

and

FL , conv

{(
1 yT

y yyT

)
∈ Σd+1 : y ∈ FL

}
and

P̂L ,

{(
1 yT

y Y

)
∈ Σd+1 : Ā

(
1 yT

y Y

)
= 0,

(
1 yT

y Y

)
� 0
}
.

Notice that conv(FL) is full dimensional thus Slater condition holds for P̂L. In addtion, we have the following
SDP relaxation:

inf
〈
L
(

0 1
2c

T

1
2c C

)
,

(
1 yT

y yyT

)〉
st. Ā

(
1 yT

y Y

)
= 0(

1 yT

y Y

)
� 0

Note: A
(

1 xT

x xxT

)
= A

(
L∗
(

1 yT

y yyT

))
where x = l + LT y.

4. Ellipsoid Method and Primal-Dual Interior-Point Method

An E ∈ Rd is called an ellipsoid if ∃c ∈ Rd andA ∈ Σd
++ such that E , E(c, A) ,

{
x ∈ Rd : (x− c)TA−1(x− c) ≤ 1

}
.

Let Bd(0, 1) denote an unit ball in Rd at the origin. The volumn of E(c, A) is given by vol(E(c, A)) =√
det(A)vol(Bd(0, 1)) where vol(Bd(0, 1)) = πd/2

Γ( d
2 +1)

. Suppose G ∈ Rd is the convex set of interest. De�ne

δ-relaxation of G as relax(G, δ) ,
{
u ∈ Rd : ‖u− x‖2 ≤ δ, somex ∈ G

}
. We will resort to a weak separation

oracle for G which takes input as x̄ ∈ Rd and correctly returns either (i) x ∈ relax(G, δ) or (ii) there eixsts
a ∈ Rd such that ‖a‖∞ = 1 and 〈a, x̄〉 ≥ 〈a, x〉 − δ,∀x ∈ relax(G, δ). The oracle tells us either the given
point is in the relaxed region of G or we can �nd a separation hyperplane such that the given point and G
lies in the opposite sides of this hyperplane.

Theorem 4.1. Every compact, convex set in Rd with nonempty interior, there exists a unique minimal
volumn ellipsoid (Lowner-John ellipsoid) containing that set. Moreover, shrinking that ellipsoid around that
center by a factor of at most d gives an ellipsoid contained in the convex set.
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Figure 4.1. Lowner-John Ellipsoid- Minimum Volumn Ellipsoid

Proof. Suppose C ⊂ Rd is the compact, convex set with nonempty interior. Let Ā ∈ Σd
++, c ∈ Rd such that

ellipsoid Ē ,
{
x ∈ Rd : (x− c)T Ā(x− c) ≤ 1

}
containing C. In order to �nd the minimal volumn ellipsoid,

we want to solve the following optimization problem as given by

(PĀ) min − ln(det(Ā))
st. (x− c)T Ā(x− c) ≤ 1,∀x ∈ C

Ā ∈ Σd
++, c ∈ Rd

Since C is bounded, we are able to de�ne an ellipsoid centered at origin that contains C in it. I.e., let
M , max {‖x‖2 : x ∈ C} + 1 and Ā , 1

M2 I, c , 0, then Ē ,
{
x ∈ Rd : (x− c)T Ā(x− c) ≤ 1

}
⊇ C. This

minimization problem is also bounded from below since the required minimal volumn ellipsoid has to be at
least as large as the maximal ellipsoid inscribed in C. Notice that Ā in (PĀ) is also a function of x thus the
inequality constraint is nonlinear (at least third order polynomial and not convex) and we want to formulate
in a way such that SDP algorithms can be applied. This motivates us to lift the problem to Rd+1 with C in
Rd as contained in an embedded hyperplane

{
x ∈ Rd+1 : x0 = 1

}
in the lifted space. We will focus on the

revised problem given by

PA − ln(det(A))

st. (1, xT )
(
α aT

a A

)(
1
x

)
≤ 1 ∀x ∈ C(

α aT

a A

)
� 0

A ∈ Σd
++, a ∈ Rd, α ∈ R

Above PA still has the desired properties as PĀand the solutions to each problem are highly correlated. Let

(Ā, c) be the feasible solution of (PĀ), then (A , Ā, a , −Āc, α , cT Āc) is a feasible solution of (PA) with
the same objective value. This is because we have the following equality

(x− c)T Ā(x− c) = xT Āx− 2(Āc)Tx+ cT Āc = (1, xT )
(
α aT

a A

)(
1
x

)
In the other direction, let (A, a, α) be an optimal solution of (PA), we can claim α = aTA−1a. Otherwise
we can manipulate the inequality constraint α↘ +xTAx↗ +2aTx in a way such that it still stays feasible
for ∀x ∈ C and A← A+ εaaT � 0 for small enough ε > 0, which will contradict the optimality assumption
that (A, a, α) is optimal. Therefore, setting Ā , A, c ,= A−1a will also make (PĀ) feasible with the same
objective value. We know the objective function is strictly convex in Σd

++ thus the local minimimizer of (PA)
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is also a global minimizer. Let E ,
{
x ∈ Rd : (x− c)TA−1(x− c) ≤ 1

}
and Ẽ ,

{
x ∈ E : aTx ≤ aT c

}
(half

ellipsoid whose points are derived from one side of the hyperplane cutting through the center) for some

a ∈ Rd\{0}.We would like to construct the minimal volumn ellipsoid E+ that contains the half ellipsoid Ẽ.
Let c+ and A+ denote the center and the positive de�nite matrix determining E+. We have the following
relationships established:

c+ = c− 1

(d+ 1)
√
aTAa

Aa

and

A+ =
d2

d2 − 1

[
A− 2

(d+ 1)aTAa
AaaTA

]
.

This problem can be also converted to �nding a minimal volume ball containing the half ball after an a�ne
transformation

Bd(0, 1) = A−1/2E(c, A)−A−1/2c

and the results can be reverted to the original problem domain by applying the inverse a�ne transformation
A1/2(E+) + c. First, we should observe that A+ � 0 if A � 0. This can be proved by noticing that for
arbitrary h ∈ Rd\{0}, the quadratic form

hTA+h = d2

d2−1h
TAh− 2d2

(d−1)(d+1)2aT Aa
(aTAh)2

≥︸︷︷︸
Cauchy−Schwarz

d2

d2−1‖A
1/2‖22 −

2d2‖A1/2a‖22‖A
1/2h‖22

(d−1)(d+1)2‖A1/2h‖22

=
(

d
d+1

)2

‖A1/2h‖22 > 0

Suppose we take the image of Rd under the mapping A−1/2 to make our ellipsoid E be a unit ball Bd(0, 1).
Then A+ corresponds to

I+ =
d2

d2 − 1

[
I − 2

(d+ 1)āT ā
āāT

]
where ā = A1/2a. This matrix in the brackets has two eigenvalues d−1

d+1 and 1 (with multiplicity (d−1)). There-

fore det(I+) =
(

d2

d2−1

)d

· d−1
d+1 ·1, then we get the volume E+ 's formula as vol(E+) =

(
d

d−1

)d−1
d

d+1vol(E). �

Sherman-Morrison-Woodbury formula is very useful when computing the inverse in form of (A+ uvT )−1.
LetA ∈ Σd be nonsingular and u, v ∈ Rd be given. Then (A+uvT ) is nonsingular if and only if (1+uTA−1v) 6=
0. If the latter condition holds, then its inverse can be written as

(A+ uvT )−1 = A−1 − 1
1 + uTA−1v

A−1uvTA−1.

This can be easily veri�ed by taking multiplication of (A+ uvT ) on both sides.

Theorem 4.2. We have Ẽ ⊆ E+ and ln
(

vol(E+)
vol(E)

)
≤ − 1

2d

Suppose vol(E0) = R and we want Ek ≤ ε, from above theorem, by O(d ln(R
ε )) iterations it su�ces. The

exact arithmetic algorithm for ellipsoid method is presented below:

(1) Given an ellipsoid E0 ⊇ G and a weak separation oracle for G, let E0 , E(c, A)
(2) Ask oracle �is c (center of the ellipsoid) in G�. If �yes�, STOP. Otherwise, we have a ∈ Rd such that

G ⊆ Ẽ , {x ∈ E(c, A) : 〈a, x〉 ≤ 〈a, c〉}
(3) Construct the smallest volume ellipsoid E+containing Ẽ
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(4) If vol(E+) < ε STOP. Report vol(G) < ε

(5) E(c, A) , E+and repeat step 2.

Ellipsoid method is indeed a bisection method over higher dimensional problems. Separating and supporting
hyperplanes for a convex set G have fundamental connections to the oracle. Even if the problem is convex but
non-di�erentiable, we can use sub-gradient oracle for problem like inf {f(x) : x ∈ G}. The ellipsoid method's
elegance in theoretical proof of complexities is far reaching.

Ellipsoid method can be applied to SDP problems in a very elegant way. Suppose (P ) and (D) both have
Slater points X̄ and (ȳ, S̄),respectively. We can replace our primal problem with a variant which can use
ellipsoid method to solve.

(P̃ ) inf 〈C,X〉
st. A(X) = b〈

S̄,X
〉
≤ 2

〈
X̄, S̄

〉
X � 0

We have the following theorem with respect to the newly created dual problem (P̃ ).

Theorem 4.3. (a) Both (P ) and (P̃ ) have optimal solutions, and their optimal values coincide and are
attained.

(b) Let G denote the feasible region of (P̃ ). Then G is convex and bounded. Moreover,

BG(X̄, λn(X̄)) ⊆ G ⊆ BG

(
0,

2
〈
X̄, S̄

〉
λn(S̄)

)
where BG denotes the unit ball in the a�ned space spanned by G.

(c) We have sup {〈C,X〉 : X ∈ G} − inf {〈C,X〉 : X ∈ G} ≤ 4n‖C‖2〈X̄,S̄〉
λn(S̄)

.

Primal-dual interior point method generates a sequence
{
X(k), y(k), S(k)

}
∈ Σn

++ ⊕ Rm ⊕ Σn
++ such that

A(X(k)) = b,A∗(y(k)) + S(k) = C and
〈
X(k), S(k)

〉
→ 0 as k →∞.

We de�ne a strictly convex function f : Σn
++ 7→ R

f(X) := − ln(det(X))

Notice that for any sequence
{
X(k)

}
⊂ Σn

++,converging to the boundary of Σn
+ we will have f(X(k)) →

+∞. For every X ∈ Σn
++and H ∈ Σn, we have

〈
f
′
(X),H

〉
= −tr(X−1H) and

〈
f
′′
(X)H,H

〉
=

tr(X−1HX−1H) = tr
[(
X−1/2HX−1/2

)2] ≥ 0.
Let's give a proof of above. det(X) = X11 det(X{1, 1}) −X12 det(X{1, 2}) + · · · where X{i, j} denotes

the matrix deleting row i and column j. Let adj(X) be the matrix of cofactors so d(det(X))
dX = adj(X). By

chain rule we get ∇X ln(det(X)) = adj(X)
det(X) = X−1. By Taylor's theorem,

f(X +H) = f(X) + 〈∇f(X),H〉︸ ︷︷ ︸
=−tr(X−1H)

+O(‖H‖)

and the Hessian of f(X) is ∇2f(X) = − ∂
∂X (X−1). We use the fact that 0 = G(X) = XX−1 − I. Taking

�rst derivative on both sides we arrive at

∂

∂X
0 ·∆X =

∂

∂X
G(X) ·∆X =

∂X

∂X
·X−1 ·∆X +X

∂X−1

∂X
·∆X = X−1 ·∆X +X

∂X−1

∂X
·∆X.



SEMIDEFINITE OPTIMIZATION 20

Multiplying X−1on both sides and we get ∇2f(X)H = X−1HX−1 as expected. As µ is given, we can de�ne
a SDP problem

(Pµ) inf 1
µ 〈C,X〉+ f(X)

A(X) = b

Be aware of the fact that (Pµ) is strictly convex and tends to in�nity for every sequence tending to the
boundary of Σn

+. By applying the optimality condition for this CONVEX problem, we get

A(X) = b,X � 0

and

−A∗(y)−X−1 +
1
µ
C = 0.

If we force S = µX−1 we will get a new system

A(X) = b X � 0
A∗(y) + S = C

S = µX−1

Above system has a unique solution and the solution de�nes the primal-dual central path. We should pay
attention to that 〈X(µ), S(µ)〉 = nµ = 〈C,X〉 − bT y. Thus we will decrease the duality gap by decreasing
µ. A measure of centrality is given by

ψ(X,S) , n ln
(
〈X,S〉
n

)
− ln det(X)− ln det(S)

We have the following theorem about the centrality measure function ψ(X,S).

Theorem 4.4. For every (X,S) ∈ Σn
++⊕Σn

++, ψ(X,S) ≥ 0 and the equality holds i�. S = µX−1 for some
µ > 0

Proof. For every strictly feasible (X,S) we will have

〈X,S〉 − ln det(X) + sup
X∈Σn

++

{− 〈S,X〉+ ln det(X)} ≥ 0

The equality holds i�X = S−1since logarithm determinant function is strictly convex and sup {− 〈S,X〉+ ln det(X)} =
−〈S,X〉+ln det(X). Since X is chosen to be the optimal value of sup {− 〈S,X〉+ ln det(X)}, the �rst order
necessary and su�cient condition for a minimizer implies that −S = −X−1. Therefore we can say for every
(X,S) ∈ Σn

++ ⊕ Σn
++,

〈X,S〉 − ln det(X)− ln det(S)− n ≥ 0
Notice that Σn

++is a convex cone, thus we can replace X by α1X,α1 > 0 and S by α2S, α2 > 0 while still
satisfying the inequality.Thus

α1α2 〈X,S〉 − n ln(α1α2)− ln det(X)− ln det(S)− n ≥ 0

and above equality holds i�. S = 1
α1α2

X−1. Let t , α1α2 > 0, the above inequality can be reformulated as

t 〈X,S〉 − n ln t− ln det(X)− ln det(S)− n ≥ 0

which is a strictly convex function of t. By the �rst order necessary and su�cient condition for a minimizer,
we have 〈X,S〉 − n

t = 0 which implies

t =
n

< X,S >
.
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Thus we have
ψ(X,S) ≥ 0

as required. Moreover, the equality holds above i� S = µX−1 for µ = 〈X,S〉
n . �

We will de�ne the primal-dual potential function φq(X,S) , q ln (〈X,S〉) + ψ(X,S), which serves the
purpose to guide us to �nd the next appropriate primal-dual pair. Suppose we are in the k-th iteration and
we want to update

(
X(k), S(k)

)
with

(
X(k+1), S(k+1)

)
such that A(X) = b,A∗(y) + S = C,X � 0, S � 0

are still satis�ed. In addition, we want 〈X,S〉 is decreased and ψ(X,S) is not increased too much. We will
�nd the search directions DX , DS ∈ Σn and a step size α ∈ R++. Thus the next primal-dual pair can be
expressed as

X(α) , X + αDX , S(α) , S + αDS .

It is obvious we should have DX in the null space of A(·) and DS in the range of A∗(·).

Theorem 4.5. Suppose X(0), S(0) ∈ Σn
++ feasible in (P ) and (D) respectively are given such that for

some ε > 0 , ψ(X(0), S(0)) ≤
√
n ln( 1

ε ). We also assume that we can guarantee φq(X(k+1), S(k+1)) −
φq(X(k), S(k)) ≤ −δ for all k ∈ {0, 1, · · · } where δ > 0 is an absolute constant. Then after order of

k̄ = O
(√
n ln( 1

ε )
)
iterations we have the duality gap

〈
X(k), S(k)

〉
≤ ε

〈
X(0), S(0)

〉
for ∀k ≥ k̄ and X(k), S(k)

feasible in (P ) and (D).

Proof. The proof simply follows from the de�nition of the potential function and the initial assumptions.
The details will be omitted here �

We wanna �nd an automorphism linear, self-adjoint, positive de�nite transformation T : Σn 7→ Σn such
that

(i) T ∈ Aut(Σn
+)

(ii) T (S) = T−1(X) =: V
(iii) T (X−1) = T−1(S−1) =: V −1

Above linear transform gives µ = 〈X,S〉
n = 〈T

−1(X),T (S)〉
n = 〈V,V 〉

n . We will de�ne D̄X := T−1(DX) and

D̄S := T (DS) respectively. Then

〈X(α), S(α)〉 = 〈X,S〉+ α 〈DX , S〉+ α 〈X,DS〉+ α2 〈DX , DS〉 = 〈X,S〉+ α
〈
V, D̄X + D̄S

〉
and we utilize the fact that 〈DX , S〉 =

〈
T−1(DX), T (S)

〉
=
〈
D̄X , V

〉
, 〈X,DS〉 =

〈
T−1(X), T (DS)

〉
=〈

V, D̄S

〉
and 〈DX , DS〉 = 0. Since we want to keep the duality gap as small as possible, so D̄X + D̄S = −V

is the best choice. How about the barrier part of the potential function? Similarly, we have the �rst order
approximation of the di�erence between two iterations[〈

f
′
(X), DX

〉
+
〈
f
′
(S), DS

〉]
=
〈
V −1, D̄X + D̄S

〉
so we need to choose D̄X + D̄S to be V −1 or a positive multiple. Combining both duality gap and barrier

function, we choose a joint Ũ := − (n+
√

n)
〈X,S〉 V + V −1. The Frobenius norm of ‖Ũ‖F > 0 otherwise suppose

‖Ũ‖ = 0 will imply V −1 = (n+
√

n)
〈X,S〉 V. If we take inner product with V on both sides of above, we arrive

at a contradiction n =
〈
V −1, V

〉
=
〈

(n+
√

n)
〈X,S〉 V, V

〉
= (n+

√
n)

〈T−1(X),T (S)〉 〈V, V 〉 = (n +
√
n). Therefore we can

scale U := Ũ
‖Ũ‖F

and it has a deep connection to the measure of the centrality. De�ne µ̃ := 〈X
−1,S−1〉

n =
〈T (X−1),T−1(S−1)〉

n = 〈V
−1,V −1〉

n and we have the former de�nition of µ = 〈X,S〉
n = 〈T

−1(X),T (S)〉
n = 〈V,V 〉

n . We

can derive ‖Ũ‖2F = (n+
√

n)2

nµ − 2 (n+
√

n)
µ + nµ̃ = 1

µ [n(µµ̃− 1) + 1] . We have the following theorem about µµ̃.
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Theorem 4.6. Let X,S ∈ Σn
++, then µµ̃ ≥ 1 and the equality holds if and only if S = µX−1.

Proof. We can construct
〈T (S−µX−1),T (S−µX−1)〉

nµ = 1
nµ

〈
V − µV −1, V − µV −1

〉
= 1

nµ

(
nµ− 2nµ+ nµ2µ̃

)
=

µµ̃− 1 ≥ 0 and the equality holds i� S = µX−1. And we can immediately say that ‖Ũ‖2F ≥ 1
µ and equality

holds i� S = µX−1. �

We come back to the search direction problem, how can we choose the appropriate D̄X , dy, D̄S such that
duality gap is decreased and we don't deviate too much from the center path while maintaining the strict
feasibility? We need to solve the following system to give the answers:

Ā(D̄X) = 0, Ā∗(dy) + D̄S = 0, D̄X + D̄S = U

where Ā := A(T (·)), D̄X := T−1(DX) and D̄S := T (DS) . By the de�nition of Frobenius form and
orthogonality of D̄X and D̄S , we get ‖D̄X‖2F + ‖D̄S‖2F = ‖U‖2F = 1. Thus we get the desired property
‖D̄X‖F ≤ 1 and ‖D̄S‖F ≤ 1. By the following theorem, we can guarantee that X(α) and S(α) is positive
(semi)de�nite.

Theorem 4.7. Suppose X ∈ Σn
++, D ∈ Σn satis�es ‖D‖X :=

〈
D,X−1DX−1

〉1/2 ≤ 1 then

f(X) +
〈
f
′
(X), D

〉
≤ f(X +D) ≤ f(X) +

〈
f
′
(X), D

〉
+

‖D‖2X
2(1− ‖D‖X)2

Proof. The LHS can be easily proved by the convexity of f . The right hand side inequality follows from the
Taylor's theorem. �

The condition ‖DX‖X ≤ 1(< 1) implies (X +DX) � 0(� 0) which follows by

1 ≥ ‖DX‖X :=
〈
DX , X

−1DXX
−1
〉1/2

= tr
(
DXX

−1DXX
−1
)1/2

= tr
(
X−1/2DXX

−1/2X−1/2DXX
−1/2

)1/2

= ‖X−1/2DXX
−1/2‖F

which is equivalent to I ±X−1/2DXX
−1/2 � 0. Applying automorphism X1/2 ·X1/2 to both sides as above

we can get X ±DX � 0.
The only remaining unsolved problem is what is the automorphism T? Indeed, T can be chosen as W ·W

where

W 2 := S−1/2
(
S1/2XS1/2

)1/2

S−1/2.

We need to verify WSW = W−1XW−1 := V and WX−1W = W−1S−1W−1 := V −1. I.e.

WSW = W−1XW−1 ⇔W 2SW 2 = X ⇔ S1/2W 2SW 2S1/2 = S1/2XS1/2 ⇔W 2 = S−1/2
(
S1/2XS1/2

)1/2

S−1/2.

The primal-dual interior point method is given as follows:

Algorithm 4.8. Given X(0), S(0) ∈ Σn
++ such that X(0),S(0) are feasible in (P ) and (D) respectively,

ψ(X(0), S(0)) ≤
√
n ln( 1

ε ) for some given ε > 0.
k = 0
while

(〈
X(k), S(k)

〉
> ε

〈
X(0), S(0)

〉)
W 2 :=

(
S(k)

)−1/2
[(
S(k)

)1/2
X(k)

(
S(k)

)1/2
]1/2 (

S(k)
)−1/2

Ā(·) := A (W ·W )
[
Āi := WAiW

]
V := WS(k)W
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Figure 4.2. Primal-Dual Interior Point Method

Ũ := − n+
√

n

〈X(k),S(k)〉V + V −1, Ū := Ũ
‖Ũ‖F

Solve system

Ā(D̄X) = 0
Ā∗(dy) + D̄S = 0
D̄X + D̄S = U

Compute ᾱ := argmin
{
φ√n

(
X(k) + αWD̄XW,S

(k) + αW−1D̄SW
−1
)

: α > 0
}

Let X(k+1) := X(k) + ᾱWD̄XW and S(k+1) := S(k) + ᾱW−1D̄SW
−1

k := k + 1
end {while}

The above algorithm terminates at most 24
√
n ln( 1

ε ) iterations with feasibleX(k), S(k) such that
〈
X(k), S(k)

〉
≤

ε
〈
X(0), S(0)

〉
.

5. Application on Approximation Algorithms

SDP is very useful in many applications. In this section, I will give three examples which are based on
SDP problem formulations. We can see the beauty of SDP programming to give a better performance in
contrast to its counterpart LP programming.

A max cut problem is de�ned as below: Given a simple undirected graph G = (V,E) a cut is (S, V \S)
where S ⊆ V. Given a cut S in G, we are interested in the set edges that cross the cut. δ(S) :=
{{i, j} ∈ E : i ∈ S, j ∈ V \S}. The max cut problem indicates given Wij ≥ 0 for ∀ {i, j} ∈ E, �nd a cut
S in G such that

∑
{i,j}∈δ(S)Wij is maximized. This problem actually is an NP-hard problem. In SDP

formulation, we will encode vertices instead of edges in LP . The cut will be encodes by {−1, 1}vector
u ∈ {−1, 1}|V | where ui := 1 if i ∈ S and ui = −1 otherwise. Therefore the objective function can be written
as max 1

4

∑
i,j Wij (1− uiuj) .We can further convert it to the inner product form max 1

4

〈
W, ēēT

〉
− 1

4 〈W,X〉
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Figure 5.1. Random Hyperplane Technique

where X := uuT ∈ Σ|V |+ . The complete SDP formulation is given by

(P ) max− 1
4 〈W,X〉

(
+

1
4
〈
W, ēēT

〉)
st. diag(X) = ē

X � 0
rank(X) = 1

where the �rst equality constraint forces Xii ∈ {−1, 1} ,∀i ∈ {1, · · · |V | = n} and the second and the third
constraint force X to be the outer product of a vector. We will delete the rank-1 constraint to relax the
problem in a tractable form. the dual problem is given by

(D) min ēT y

(
+

1
4
〈
W, ēēT

〉)
st. Diag(y)− S = − 1

4W

S � 0

We will notice that X̄ := I is a Slater point in (P ) and ȳ = ηē where η := 1
4

(∑
i,j |Wij |

)
+ 1 can make

S̄ := Diag(ȳ) + 1
4W � 0.We can apply aforementioned primal-dual interior method to �nd the optimal

solution X∗ of (P ) and factorize X∗ = V V Twhere V T :=
[
v(1), · · · v(n)

]
and v(i) ∈ Rd d ≤ n if rank(X∗) = d.

We can then pick a random point r on the hypersphere (since every v(i) is on the hypersphere in Rd) in
Rd and de�ne S :=

{
i ∈ V : rT v(i) ≥ 0

}
. I will omit the proof of the performance in the mean sense, which

states that the expected value of the cut generated by this random hyperplane technique (RHT) yields at
least ρ := 0.87856 approximation of the optimal objective value of the SDP problem. All these random
algorithm can be de-randomized to give a deterministic algorithm. The best known worst case for SDP
relaxation on Max -Cut problem is given by an odd cycle with length 5, the max cut is therefore 4 (assume

edge weight is equal to 1), but the optimal value of the SDP problem is 2
√

5. Max cut based on SDP is
superior to its counterpart based on LP because in SDP formulations, we use a vector to represent each node
and more underlying information will be utilized in classi�cation.

Satis�ability problem is de�ned as: Find binary variables x1, x2, · · ·xn ∈ {true = 1, false = 0} such that
formula C1 ∩ C2 · · · ∩ Cm is true where clause Ci := l1 ∪ · · · ∪ lk. Literal li is either xj or x̄j . Maximum
satis�ability problem is de�ned as: Given weights wi for each clause, �nd x ∈ {0, 1}n such that total weights
of satis�ed clauses is maximized. Max k-Sat problem forces each clause has at most k-literals. We can have
a ρ-approximation polynomial time algorithm for max-2 SAT problem in contrast to its 0.75 approximation
in LP formulation.
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The SDP formulation for Max 2-SAT problem will use some tricks and we can see Max 2-SAT problem

is indeed equivalent to Max Cut problem. We will use an additional variable x0 ∈ {−1, 1} and


x1

x2

...
xn

 ∈
{−1, 1}n such that x0determines what is �true�. Therefore xj is true if and only if xj = x0. Then we can

easily verify that literal xi can be represented by (x0x1+1)
2 and x̄i can be denoted as 1−x0xi

2 . Clause (xi ∪ xj)
by De-Morgan's law can be written as

(xi ∪ xj) = 1− (x̄i) (x̄j) =
1
4
(1 + x0xi) +

1
4
(1 + x0xj) +

1
4
(1− xixj)

which implies the max 2-SAT problem can be formulated very similar to max cut problem and can be applied
the same RHT to assign true or false to the literals. To be more speci�c. the objective value is given by

max
1
4

 ∑
{i,j}∈E+

Wij(1 + xixj) +
∑

{i,j}∈E−

Wij(1− xixj)


where x ∈ {−1, 1}n+1

, Wij ≥ 0 for ∀i, j . Let's do another example to see what SDP can do for us.

Example 5.1. Consider the optimization problem f̄(W ) := maxx∈{−1,1}n xTWx and f(W ) := minx∈{−1,1}n xTWx.
They can be rewritten in their original and relaxed SDP forms, respectively, i.e:

f̄(W ) = max 〈W,X〉
st. diag(X) = ē

X � 0
rank(X) = 1

and

F̄ (W ) = max 〈W,X〉
st. diag(X) = ē

X � 0

We have

F(W ) ≤ f(W ) ≤ 2
π
F(W ) + (1− 2

π
)F̄ (W ) ≤ (1− 2

π
)F(W ) +

2
π
F̄ (W ) ≤ f̄(W ) ≤ F̄ (W ).

6. Summary

Above materials are based on Prof. Levent Tuncel's monograph and lectures given on Semide�nite Op-
timization in the summer term, 2007. To this far, we only give the basic ideas of SDP optimization (What
is a SDP problem? Duality theory of SDP, What is Slater condition and its implications? How to solve a
general SDP problem?) and some applications in combinatorial problems (Max-Cut, Max-2 SAT and Gen-
eral Quadratic Programming). Geometric representation of graphs, lift-and-project method and successive
regression will be covered in a separate survey along with graph theory on coloring and algebraic method to
solve complicated graph problems.
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